phospho-NFKB p65(Thr435)抗体特异性结合抗原:抗体本身不能直接溶解或杀伤带有特异抗原的靶细胞,通常需要补体或吞噬细胞等共同发挥效应以**病原微生物或导致病理损伤。然而,抗体可通过与病毒或**的特异性结合,直接发挥中和病毒的作用。
产品编号xy- 5661R
英文名称phospho-NFKB p65(Thr435)
中文名称磷酸化细胞核因子抗体
别 名NF-kB p65 (phospho T435); p-NF-kB p65 (phospho T435); NFkB-p65(Phospho-Thr435); RELA(phospho T435); NF kB P65; NF-kB p65; NFKBp65; NF-κBp65; p65 NF kappaB; p65 NFkB; NFKBp65; RELA; Transcription Factor p65; v rel avian reticuloendotheliosis viral oncogene homolog A (nuclear factor of kappa light polypeptide gene enhancer in B cells 3 (p65)); V Rel Avian Reticuloendotheliosis Viral Oncogene Homolog A; v rel reticuloendotheliosis viral oncogene homolog A (avian); v-rel reticuloendotheliosis viral oncogene homolog A; p65NFKB; Avian reticuloendotheliosis viral (v rel) oncogene homolog A; MGC131774; NFKB 3; NFKB3; Nuclear Factor NF Kappa B p65 Subunit; Nuclear factor of kappa light polypeptide gene enhancer in B cells 3; Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B Cells. NFκB-p65; NFκB p65; NF κB-p65; NFκBp65;
说 明 书100ul
产品类型磷酸化抗体
研究领域肿瘤 **学 染色质和核信号 信号转导 细胞凋亡 转录调节因子 激酶和磷酸酶
抗体来源Rabbit
克隆类型Polyclonal
phospho-NFKB p65(Thr435)抗体交叉反应 Human, Mouse, Rat,
产品应用WB=1:500-2000 ELISA=1:500-1000 IHC-P=1:400-800 IHC-F=1:400-800 IF=1:100-500 (石蜡切片需做抗原修复)
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量61kDa
细胞定位细胞核 细胞浆
性 状Lyophilized or Liquid
浓 度1mg/1ml
免 疫 原KLH conjugated Synthesised phosphopeptide derived from human NFKBp65 around the phosphorylation site of Thr435:EG(p-T)LS
亚 型IgG
纯化方法affinity purified by Protein A
储 存 液0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
phospho-NFKB p65(Thr435)抗体保存条件Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
PubMedPubMed
产品介绍background:
NF-kappa-B is a ubiquitous transcription factor involved in several biological processes. It is held in the cytoplasm in an inactive state by specific inhibitors. Upon degradation of the inhibitor, NF-kappa-B moves to the nucleus and activates transcription of specific genes. NF-kappa-B is composed of NFKB1 or NFKB2 bound to either REL, RELA, or RELB. The most abundant form of NF-kappa-B is NFKB1 complexed with the product of this gene, RELA. Four transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Sep 2011].
Function:
NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and p65-c-Rel complexes are transcriptional activators. The NF-kappa-B p65-p65 complex appears to be involved in invasin-mediated activation of IL-8 expression. The inhibitory effect of I-kappa-B upon NF-kappa-B the cytoplasm is exerted primarily through the interaction with p65. p65 shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-kappa-B complex. Associates with chromatin at the NF-kappa-B promoter region via association with DDX1.
Subunit:
Component of the NF-kappa-B p65-p50 complex. Component of the NF-kappa-B p65-c-Rel complex. Homodimer; component of the NF-kappa-B p65-p65 complex. Component of the NF-kappa-B p65-p52 complex. May interact with ETHE1. Binds AES and TLE1. Interacts with TP53BP2. Binds to and is phosphorylated by the activated form of either RPS6KA4 or RPS6KA5. Interacts with ING4 and this interaction may be indirect. Interacts with CARM1, USP48 and UNC5CL. Interacts with IRAK1BP1 (By similarity). Interacts with NFKBID (By similarity). Interacts with NFKBIA. Interacts with GSK3B. Interacts with NFKBIB (By similarity). Interacts with NFKBIE. Interacts with NFKBIZ. Interacts with EHMT1 (via ANK repeats) (By similarity). Part of a 70-90 kDa complex at least consisting of CHUK, IKBKB, NFKBIA, RELA, IKBKAP and MAP3K14. Interacts with HDAC3; HDAC3 mediates the deacetylation of RELA. Interacts with HDAC1; the interaction requires non-phosphorylated RELA. Interacts with CBP; the interaction requires phosphorylated RELA. Interacts (phosphorylated at 'Thr-254') with PIN1; the interaction inhibits p65 binding to NFKBIA. Interacts with SOCS1. Interacts with UXT. Interacts with MTDH and PHF11. Interacts with ARRB2. Interacts with human respiratory syncytial virus (HRSV) protein M2-1. Interacts with NFKBIA (when phosphorylated), the interaction is direct; phosphorylated NFKBIA is part of a SCF(BTRC)-like complex lacking CUL1. Interacts with RNF25. Interacts (via C-terminus) with DDX1. Interacts with UFL1 and COMMD1. Interacts with BRMS1; this promotes deacetylation of 'Lys-310'. Interacts with NOTCH2 (By similarity). Directly interacts with MEN1; this interaction represses NFKB-mediated transactivation. Interacts with AKIP1, which promotes the phosphorylation and nuclear retention of RELA. Interacts (via the RHD) with GFI1; the interaction, after bacterial lipopolysaccharide (LPS) stimulation, inhibits the transcriptional activity by interfering with the DNA-binding activity to target gene promoter DNA.
Subcellular Location:
Nucleus. Cytoplasm. Note=Colocalized with DDX1 in the nucleus upon TNF-alpha induction. Nuclear, but also found in the cytoplasm in an inactive form complexed to an inhibitor (I-kappa-B). Colocalizes with GFI1 in the nucleus after LPS stimulation.
Post-translational modifications:
Ubiquitinated, leading to its proteasomal degradation. Degradation is required for termination of NF-kappa-B response.
Monomethylated at Lys-310 by SETD6. Monomethylation at Lys-310 is recognized by the ANK repeats of EHMT1 and promotes the formation of repressed chromatin at target genes, leading to down-regulation of NF-kappa-B transcription factor activity. Phosphorylation at Ser-311 disrupts the interaction with EHMT1 without preventing monomethylation at Lys-310 and relieves the repression of target genes.
Phosphorylation at Ser-311 disrupts the interaction with EHMT1 and promotes transcription factor activity. Phosphorylation on Ser-536 stimulates acetylation on Lys-310 and interaction with CBP; the phosphorylated and acetylated forms show enhanced transcriptional activity. Phosphorylation at Ser-276 by RPS6KA4 and RPS6KA5 promotes its transactivation and transcriptional activities.
Reversibly acetylated; the acetylation seems to be mediated by CBP, the deacetylation by HDAC3 and SIRT2. Acetylation at Lys-122 enhances DNA binding and impairs association with NFKBIA. Acetylation at Lys-310 is required for full transcriptional activity in the absence of effects on DNA binding and NFKBIA association. Acetylation can also lower DNA-binding and results in nuclear export. Interaction with BRMS1 promotes deacetylation of Lys-310. Lys-310 is deacetylated by SIRT2.
S-nitrosylation of Cys-38 inactivates the enzyme activity.
Sulfhydration at Cys-38 mediates the anti-apoptotic activity by promoting the interaction with RPS3 and activating the transcription factor activity.
Sumoylation by PIAS3 negatively regulates DNA-bound activated NF-kappa-B.
Similarity:
Contains 1 RHD (Rel-like) domain.
SWISS:
Q04206
Gene ID:
5970
phospho-NFKB p65(Thr435)抗体(antibody,
Ab)是由效应B细胞(效应**B细胞)分泌,机体用于抵御外来物质,如病毒,**等抗原,结构呈“Y”字型的球状蛋白质,仅仅存在于脊椎动物的血液和B**细胞膜表面。凡是能够跟抗体结合的物质,均被称作抗原,因此对于抗抗体(能够结合抗体的抗体)来说,抗体本身也是一种抗原物质。
phospho-NFKB p65(Thr435)抗体普通抗体重链和轻链的结构
重链结构:普通的**球蛋白具有2条重链(H链),分子量约为50kD,有μ、δ、γ、ε和α五种重链亚型,对应的**球蛋白名称分别为IgM、IgG、IgA、IgD和IgE。
轻链结构: 普通**球蛋白具有2条轻链(L链),分子质量约25kDa,有κ链和λ链两种亚型,这两种轻链决定了Ig的亚型类别(IgG1,IgG2,IgG3,IgG4)。一个天然的Ig分子两条轻链总是相同的,但在同一个体内可存在分别带有κ或λ链的抗体分子。不同种属生物体内两型轻链的比例不同,正常人血清**球蛋白κ链:λ链约为2:1,而在小鼠的比例为20:1。
2.2抗体Fab段和Fc段
IgG经木瓜蛋白酶酶切后裂解为2个完全相同的Fab段和1个Fc段,每个Fab段都为单价,可与抗原结合但不会再发生凝集反应;经胃蛋白酶酶切后裂解为1个完整F(ab)2片段和碎片化的Fc片段,F(ab’)2片段为双价,可同时结合两个抗原表位。Fab段为抗原结合片段(fragment of antigen binding,Fab),相当于抗体分子的两个臂,由一个完整的轻链和重链的VH和CH1结构域组成。Fc段为可结晶段(fragment crystallizable,Fc)相当于Ig的CH2和CH3结构域,是Ig与效应分子或者细胞相互作用的部位。Fab段包含完整的可变区,以及恒定区的CH1区域。Fc段仅指Ig恒定区CH2和CH3的区域,相当于Y字结构下面那一部分。
合格 合格 p75 NGF Receptor 神经生长因子受体抗体
合格 MUC5AC 胃粘液素抗体
合格 ZNF238 锌指蛋白238抗体
合格 SNAI3 锌指蛋白293抗体
合格 ZNF408 锌指蛋白408抗体
合格 ZNF419 锌指蛋白419抗体
合格 SUSD4 SUSD4蛋白抗体
合格 SUSD5 SUSD5蛋白抗体
合格 GSK3 Alpha + Beta 糖原合酶激酶3α+β抗体
合格 SIRT2 沉默调节相关蛋白2抗体
合格 合格 CD200R CD200受体抗体
合格 DR5 死亡受体5抗体
合格 ERG3 癌基因ERG3抗体
合格 Melan A 黑色素瘤相关抗原/黑色素-A抗体
合格 phospho-CREB-1 (Thr100) 磷酸化CREB-1抗体
合格 Pepsinogen I 胃蛋白酶原1抗体
合格 Thymidine kinase 1 胸苷激酶1抗体
合格 beta Defensin 3 β防御素3抗体
合格 Histone H4 (tri methyl K20) 组蛋白H4(**基K20)抗体
合格 Pantophysin 突触素样蛋白1抗体
合格 DNA polymerase delta DNA聚合酶δ 抗体
合格 TBC1D15 TBC结构域家族D15蛋白抗体
合格 TBX18 TBX18蛋白抗体
合格 TGFBI 角膜上皮蛋白TGFBI抗体
合格 Histone H3 (acetyl K27) 乙酰化组蛋白H3抗体
合格 合格 合格 phospho-Smad2 (Ser250) 磷酸化细胞信号转导分子SMAD2抗体
合格 PKN1 蛋白激酶C相关激酶1抗体